

Modular symmetries and the flavor problem

Davide Meloni Dipartimento di Matematica e Fisica, Roma Tre

The Standard Model of Particle Physics

Left-handed

Right-handed

S.King, talk at Bethe Forum on Modular Flavor Symmetries Scalar sector

The Flavor Problem

Mass hierarchies

$$m_d \ll m_s \ll m_b \,, \,\, \frac{m_d}{m_s} = 5.02 \times 10^{-2} \,,$$

$$m_u \ll m_c \ll m_t \,, \ \frac{m_u}{m_c} = 1.7 \times 10^{-3} \,,$$

$$\frac{m_s}{m_b} = 2.22 \times 10^{-2}, \ m_b = 4.18 \text{ GeV};$$

$$\frac{m_c}{m_t} = 7.3 \times 10^{-3}$$
, $m_t = 172.9$ GeV;

The Flavor Problem

Mass hierarchies

$$m_d \ll m_s \ll m_b \,, \,\, \frac{m_d}{m_s} = 5.02 \times 10^{-2} \,,$$

$$m_u \ll m_c \ll m_t$$
, $\frac{m_u}{m_c} = 1.7 \times 10^{-3}$,

$$\frac{m_s}{m_b} = 2.22 \times 10^{-2}, \ m_b = 4.18 \ {
m GeV};$$

$$\frac{m_c}{m_t} = 7.3 \times 10^{-3}$$
, $m_t = 172.9$ GeV;

Fermion mixing

all mixing are large but the 13 element

* Smallness of neutrino masses:

$$\mathcal{M} = egin{bmatrix} m{m}_M^L & m{m}_D \ m{m}_D & m{m}_M^R \end{bmatrix} \ m{m}_{light} \sim rac{m{m}_D^2}{m{M}_M^R} \ m{m}_M^R$$

* Smallness of neutrino masses:

$$\mathcal{M} = \begin{bmatrix} m_M^L & m_D \\ m_D & m_M^R \end{bmatrix}$$
 $m_{light} \sim \frac{m_D^2}{M_M^R}$

* Hierarchical Pattern

Froggatt-Nielsen mechanism

$$L \sim \overline{\Psi_L} H \Psi_R \left(\frac{\theta}{\Lambda}\right)^n \rightarrow e^{(-q_L + q_H + q_R + n * q_\theta)}$$

* Smallness of neutrino masses:

$$\mathcal{M} = \begin{bmatrix} \mathbf{m}_{M}^{L} & \mathbf{m}_{D} \\ \mathbf{m}_{D} & \mathbf{m}_{M}^{R} \end{bmatrix}$$

$$m_{light}\!\sim\!rac{m_D^2}{M_M^R}$$

* Hierarchical Pattern

Froggatt-Nielsen mechanism

$$L \sim \overline{\Psi}_L H \Psi_R \left(\frac{\theta}{\Lambda}\right)^n$$

Too many O(1) coefficients

Works better for small mixing

* Smallness of neutrino masses:

See-saw

$$\mathcal{M} = \begin{bmatrix} \mathbf{m}_{M}^{L} & \mathbf{m}_{D} \\ \mathbf{m}_{D} & \mathbf{m}_{M}^{R} \end{bmatrix}$$

$$m_{light}\!\sim\!rac{m_D^2}{M_M^R}$$

* Hierarchical Pattern

Froggatt-Nielsen mechanism

$$L \sim \overline{\Psi}_L H \Psi_R \left(\frac{\theta}{\Lambda}\right)^n$$

Too many O(1) coefficients

Works better for small mixing

* mixing angles

elegant explanation: non-Abelian discrete flavour symmetries

Complicated scalar sector

We start from

Feruglio, 1706.08749

$$\Gamma(N) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, Z), \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} (Mod N) \}$$

the group of 2x2 matrices with integer entries modulo N and determinant equals to one modulo N

We start from Feruglio, 1706.08749

$$\Gamma(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, Z), \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} (Mod N) \right\}$$

the group of 2x2 matrices with integer entries modulo N and determinant equals to one modulo N

 $\Gamma(1)=SL(2, \mathbb{Z})=$ special linear group = the group of 2x2 matrices with integer entries and determinant equals to one, called **homogeneous modular group** Γ

We start from

Feruglio, 1706.08749

$$\Gamma(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, Z), \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} (Mod N) \right\}$$

the group of 2x2 matrices with integer entries modulo N and determinant equals to one modulo N

 $\Gamma(1)=SL(2, \mathbb{Z})=$ special linear group = the group of 2x2 matrices with integer entries and determinant equals to one, called **homogeneous modular group** Γ

 $\Gamma(N)$, N>=2 are infinite normal subgroups of Γ

We start from

Feruglio, 1706.08749

$$\Gamma(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, Z), \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} (Mod N) \right\}$$

the group of 2x2 matrices with integer entries modulo N and determinant equals to one modulo N

 $\Gamma(1)=SL(2, \mathbb{Z})=$ special linear group = the group of 2x2 matrices with integer entries and determinant equals to one, called **homogeneous modular group** Γ

 $\Gamma(N)$, N>=2 are infinite normal subgroups of Γ

the group $\Gamma(N)$ acts on the complex variable τ (Im $\tau > 0$)

$$y \tau = \frac{a \tau + b}{c \tau + d}$$

Important observation for N=1: a transformation characterized by parameters $\{a, b, c, d\}$ is identical to the one defined by $\{-a, -b, -c, -d\}$

$$\Gamma(1)$$
 is isomorphic to PSL(2, Z) = SL(2, Z)/{±1} = Γ

inhomogeneous modular group (or simply Modular Group)

Important observation for N=1: a transformation characterized by parameters $\{a, b, c, d\}$ is identical to the one defined by $\{-a, -b, -c, -d\}$

$$\Gamma(1)$$
 is isomorphic to PSL(2, Z) = SL(2, Z)/{±1} = Γ

inhomogeneous modular group (or simply Modular Group)

In addition:

$$\overline{\Gamma}(2) = \Gamma(2)/\{1,-1\}$$
 since 1 and -1 **cannot** be distinguished

$$\overline{\Gamma}(N) = \Gamma(N) \qquad N > 2$$

since 1 and -1 can be distinguished

Important observation for N=1: a transformation characterized by parameters $\{a, b, c, d\}$ is identical to the one defined by $\{-a, -b, -c, -d\}$

$$\Gamma(1)$$
 is isomorphic to PSL(2, Z) = SL(2, Z)/{±1} = Γ

/

inhomogeneous modular group (or simply Modular Group)

In addition:

$$\overline{\Gamma}(2) = \Gamma(2)/\{1,-1\}$$

$$\downarrow$$
 since 1 and -1 **cannot** be distinguished

$$\overline{\Gamma}(N) = \Gamma(N)$$
 $N > 2$

since 1 and -1 can be distinguished

Finite Modular Group:

$$\Gamma_{N} = \frac{\overline{\Gamma}}{\overline{\Gamma}(N)}$$

Generators of Γ_{N} : elements S and T satisfying

$$S^2 = 1$$
, $(ST)^3 = 1$, $T^N = 1$

$$S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad T = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}$$

corresponding to:

$$\tau \stackrel{S}{\rightarrow} -\frac{1}{\tau}$$

$$\tau \stackrel{T}{\Rightarrow} \tau + 1$$

Generators of Γ_{N} : elements S and T satisfying

$$S^2 = 1$$
, $(ST)^3 = 1$, $T^N = 1$

$$S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad T = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}$$

corresponding to:

$$\tau \stackrel{S}{\rightarrow} -\frac{1}{\tau}$$

$$\tau \stackrel{T}{\Rightarrow} \tau + 1$$

relevant for model building:

for $N \le 5$, the finite modular groups Γ_{N} are isomorphic to non-Abelian discrete groups

$$\Gamma_2 \simeq S_3$$
 $\Gamma_3 \simeq A_4$ $\Gamma_4 \simeq S_4$ $\Gamma_5 \simeq A_5$

Then the question is: why Modular Symmetry?

Modular Forms

Modular Forms:

holomorphic functions of the complex variable τ with well-defined transformation properties under the group $\Gamma(N)$

Modular Forms

Modular Forms:

holomorphic functions of the complex variable τ with well-defined transformation properties under the group $\Gamma(N)$

$$f(\gamma \tau) = (c \tau + d)^{2k} f(\tau), \quad \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma(N)$$
 $2k = \text{weigth}, N = \text{level}$

R. C. Gunning, Lectures on Modular Forms, Princeton, New Jersey USA, Princeton University Press 1962

N	$d_{2k}(\Gamma(N))$
2	k+1
3	2k + 1
4	4k + 1
5	10k + 1
6	12k
7	28k - 2

Key points:

1. Modular forms of weight 2k and level N \geq 2 are invariant, up to the factor $(c\tau + d)^{2k}$ under $\Gamma(N)$ but they transform under Γ_N !

$$f_{i}(\gamma\tau) = (c \ \tau + d)^{2k} \rho(\gamma)_{ij} f_{j}(\tau)$$
 unitary representation of Γ_{N}

representative element of $\Gamma_{\!_{N}}$

Key points:

1. Modular forms of weight 2k and level $N \ge 2$ are invariant, up to the factor $(c\tau + d)^{2k}$ under $\Gamma(N)$ but they transform under Γ_N !

$$f_{i}(\gamma \tau) = (c \ \tau + d)^{2k} \rho(\gamma)_{ij} f_{j}(\tau)$$
 unitary representation of Γ_{N}

representative element of $\Gamma_{_{\! N}}$

2. in addition, one assumes that the fields of the theory $\chi_{_{\! I}}$ transforms non-trivially under $\Gamma_{_{\! N}}$

$$\chi(x)_i \rightarrow (c \tau + d)^{-k_i} \rho(\gamma)_{ij} \chi(x)_i$$

not modular forms! No restrictions on ki

Building blocks:

1. Modular forms and fields: $L_{\mathit{eff}} \in f(\tau) \times \phi^{(1)} ... \phi^{(n)}$

Building blocks:

1. Modular forms and fields: $L_{\it eff}$ \in f $(au) imes \phi^{(1)} ... \phi^{(n)}$

2. Invariance under modular transformation requires:

$$2k = \sum_{i} k_{i}$$

$$\rho_{f} \otimes \rho_{\chi_{1}} \otimes ... \otimes \rho_{\chi_{n}} \supset I$$

To start playing the game:

Can someone give me the Modular Forms?

Long list from S.T. Petcov, Bethe Forum, University of Bonn, 04/05/2022

For $(\Gamma_3 \simeq A_4)$, the generating (basis) modular forms of weight 2 were shown to form a 3 of A_4 (expressed in terms of log derivatives of Dedekind η -function η'/η of 4 different arguments).

F. Feruglio, arXiv:1706.08749

For $(\Gamma_2 \simeq S_3)$, the two basis modular forms of weight 2 were shown to form a 2 of S_3 (expressed in terms of η'/η of 3 different arguments).

T. Kobayashi, K. Tanaka, T.H. Tatsuishi, arXiv:1803.10391

For $(\Gamma_4 \simeq S_4)$, the 5 basis modular forms of weight 2 were shown to form a 2 and a 3' of S_4 (expressed in terms of η'/η of 6 different arguments).

J. Penedo, STP, arXiv:1806.11040

For $(\Gamma_5 \simeq A_5)$, the 11 basis modular forms of weight 2 were shown to form a 3, a 3' and a 5 of A_5 (expressed in terms of Jacobi theta function $\theta_3(z(\tau), t(\tau))$ for 12 different sets of $z(\tau), t(\tau)$).

P.P. Novichkov et al., arXiv:1812.02158; G.-J. Ding et al., arXiv:1903.12588

Multiplets of higher weight modular forms have been also constructed from tensor products of the lowest weight 2 multiplets:

- i) for N=4 (i.e., S_4), multiplets of weight 4 (weight $k\leq 10$) were derived in arXiv:1806.11040 (arXiv:1811.04933);
- ii) for N=3 (i.e., A_4) multiplets of weight k < 6 were found in arXiv:1706.08749;
- iii) for N=5 (i.e., A_5), multiplets of weight $k \le 10$ were derived in arXiv:1812.02158.

Constructing the Modular Forms

Crucial observation:

$$g(\tau) \rightarrow e^{i\alpha}(c \tau + d)^k g(\tau)$$

$$\frac{d}{d\tau}\log[g(\tau)] \rightarrow (c\tau + d)^2 \frac{d}{d\tau}\log[g(\tau)] + kc(c\tau + d)$$

this term prevents of having a modular form of weight **2 k** = **2**

Constructing the Modular Forms

Crucial observation:

$$g(\tau) \rightarrow e^{i\alpha}(c \tau + d)^k g(\tau)$$

$$\frac{d}{d\tau}\log[g(\tau)] \rightarrow (c\tau + d)^2 \frac{d}{d\tau}\log[g(\tau)] + kc(c\tau + d)$$

this term prevents of having a modular form of weight **2 k** = **2**

The inhomogeneous term can be removed if we combine several $f_i(\tau)$ with weights k_i

$$\frac{d}{d\tau} \Sigma_{i} \log[g_{i}(\tau)] \rightarrow (c\tau + d)^{2} \frac{d}{d\tau} \Sigma_{i} \log[g_{i}(\tau)] + (\Sigma_{i} k_{i}) c(c\tau + d)$$
with $\Sigma_{i} k_{i} = 0$

Let us find the functions $f(\tau)$!

The group S_3 contains 1 + 1' + 2

N	$d_{2k}(\Gamma(N))$	•
2	k+1	
3	2k+1	
4	4k+1	
5	10k + 1	
6	12k	
7	28k - 2	

two independent modular forms can fit into a doublet of S₃

Let us find the functions $f(\tau)$!

The group S_3 contains 1 + 1' + 2

N	$d_{2k}(\Gamma(N))$
2	k+1
3	2k+1
4	4k+1
5	10k + 1
6	12k
7	28k - 2

two independent modular forms can fit into a doublet of S₃

Dedekind eta functions
$$\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1 - q^n)$$
 $q \equiv e^{i2\pi r}$

S:
$$\eta(-1/\tau) = \sqrt{-i\tau} \ \eta(\tau)$$
 , T: $\eta(\tau+1) = e^{i\pi/12} \ \eta(\tau)$

 η^{24} is a modular form of weight 12

Constructing the Modular Forms

the system is closed under modular transformation

Constructing the Modular Forms

the system is closed under modular transformation

candidate modular form

$$Y(\alpha,\beta,\gamma) = \frac{d}{d\tau} \left[\alpha \log \eta(\tau/2) + \beta \log \eta((\tau+1)/2) + \gamma \log \eta(2\tau) \right]$$

$$\alpha + \beta + \gamma = 0$$

A case study: $\Gamma_{s} \sim S_{s}$

Constructing the Modular Forms

Equations to be satisfied:

$$\begin{pmatrix} Y_1(-1/\tau) \\ Y_2(-1/\tau) \end{pmatrix} = \tau^2 \rho(S) \begin{pmatrix} Y_1(\tau) \\ Y_2(\tau) \end{pmatrix}, \qquad \begin{pmatrix} Y_1(\tau+1) \\ Y_2(\tau+1) \end{pmatrix} = \rho(T) \begin{pmatrix} Y_1(\tau) \\ Y_2(\tau) \end{pmatrix}$$

representation of generators

$$\rho(S) = \frac{1}{2} \begin{pmatrix} -1 & -\sqrt{3} \\ -\sqrt{3} & 1 \end{pmatrix}, \qquad \rho(T) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
$$(\rho(S))^2 = \mathbb{I}, \qquad (\rho(S)\rho(T))^3 = \mathbb{I}, \qquad (\rho(T))^2 = \mathbb{I}$$

A case study: $\Gamma_{s} \sim S_{s}$

Constructing the Modular Forms

Equations to be satisfied:

$$\begin{pmatrix} Y_1(-1/\tau) \\ Y_2(-1/\tau) \end{pmatrix} = \tau^2 \rho(S) \begin{pmatrix} Y_1(\tau) \\ Y_2(\tau) \end{pmatrix}, \qquad \begin{pmatrix} Y_1(\tau+1) \\ Y_2(\tau+1) \end{pmatrix} = \rho(T) \begin{pmatrix} Y_1(\tau) \\ Y_2(\tau) \end{pmatrix}$$

representation of generators

$$\rho(S) = \frac{1}{2} \begin{pmatrix} -1 & -\sqrt{3} \\ -\sqrt{3} & 1 \end{pmatrix}, \qquad \rho(T) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
$$(\rho(S))^2 = \mathbb{I}, \qquad (\rho(S)\rho(T))^3 = \mathbb{I}, \qquad (\rho(T))^2 = \mathbb{I}$$

$$Y_1(\alpha, \beta, \gamma) \sim Y(1, 1, -2)$$

$$Y_2(\alpha,\beta,\gamma) \sim Y(1,-1,0)$$

$$Y_{1}(\tau) = \frac{i}{4\pi} \left(\frac{\eta'(\tau/2)}{\eta(\tau/2)} + \frac{\eta'((\tau+1)/2)}{\eta((\tau+1)/2)} - \frac{8\eta'(2\tau)}{\eta(2\tau)} \right)$$

$$Y_{2}(\tau) = \frac{\sqrt{3}i}{4\pi} \left(\frac{\eta'(\tau/2)}{\eta(\tau/2)} - \frac{\eta'((\tau+1)/2)}{\eta((\tau+1)/2)} \right),$$
 doublet of S3: Y

How to predict the Neutrino mass matrix (from the Weinberg operator, wrong path...)

For a satisfactory model, we ask:

- 1. small number of operators → *predictability*
- 2. no new scalar fields beside Higgs(es) → **symmetry breaking dictated by the vev of** τ

How to predict the Neutrino mass matrix (from the Weinberg operator, wrong path...)

For a satisfactory model, we ask:

- 1. small number of operators → *predictability*
- 2. no new scalar fields beside Higgs(es) → **symmetry breaking dictated by the vev of** τ

	S ₃	SU(2)	k _i
$L_{e\mu} = (e, \mu)$	2	2	-1
$L_{ au}$	1	2	-1
H _u	1	2	0

How to predict the Neutrino mass matrix (from the Weinberg operator, wrong path...)

For a satisfactory model, we ask:

- 1. small number of operators → *predictability*
- 2. no new scalar fields beside Higgs(es) \rightarrow **symmetry breaking dictated by the vev of** τ

using one power of Y (modular form of lowest weight)

	S_3	SU(2)	k _i
$L_{e\mu} = (e, \mu)$	2	2	-1
$L_{ au}$	1	2	-1
H _u	1	2	0

$L=h_u^2[c]$	$a((L_{e\mu}L)$	$(e\mu)_2, Y)_1$	$+bL_{\tau}($	$L_{e\mu}Y)_1]$
	1		,	
	aY_2	aY_1 $-aY_2$ $bY_2/2$	$bY_1/2$	
$m_{\nu} =$	aY_1	$-aY_2$	$bY_2/2$	
	$bY_1/2$	$bY_2/2$	0	

How to predict the Neutrino mass matrix (from the Weinberg operator, wrong path...)

Mass matrix against the experimental data

$$m_{v} = \begin{vmatrix} aY_{2} & aY_{1} & bY_{1}/2 \\ aY_{1} & -aY_{2} & bY_{2}/2 \\ bY_{1}/2 & bY_{2}/2 & 0 \end{vmatrix}$$

$\sin^2 \theta_{12}/10^{-1}$	$2.97^{+0.17}_{-0.16}$
$\sin^2 \theta_{13} / 10^{-2}$	$2.15^{+0.07}_{-0.07}$
$\sin^2 \theta_{23}/10^{-1}$	$4.25^{+0.21}_{-0.15}$
δ_{CP}/π	$1.38^{+0.23}_{-0.20}$
r	$2.92^{+0.10}_{-0.11} \times 10^{-2}$

5 observables, 2 complex parameters: a/b and $\tau \rightarrow \text{very}$ difficult task!

large χ^2 of O(100) mainly driven by θ_{13}

Conclusions

Modular symmetries offer an alternative way for model building

Yukawa couplins dictated by modular forms

unified description of quarks and leptons

symmetry breaking by the vev of tau only

A lot to do:

mass hierarchy

more than one modulus

more pheno: leptogenesis, LFV...

Backup slides

Kahler potential

Under
$$\Gamma$$
:
$$\begin{cases} \tau \to \frac{a\tau + b}{c\tau + d} \\ \varphi^{(I)} \to (c\tau + d)^{-k_I} \rho^{(I)}(\gamma) \varphi^{(I)} \end{cases}$$

Tte invariance of the action requires the invariance of the superpotential $w(\Phi)$ and the invariance of the Kahler potential up to a Kahler transformation:

$$\begin{cases} w(\Phi) \to w(\Phi) \\ K(\Phi, \bar{\Phi}) \to K(\Phi, \bar{\Phi}) + f(\bar{\Phi}) + f(\bar{\Phi}) \end{cases}$$

Kahler potential:

$$\sum_{I} (-i\tau + i\bar{\tau})^{-k_I} |\varphi^{(I)}|^2$$

modular invariant kinetic terms

$$\frac{h}{\langle -i\tau + i\bar{\tau}\rangle^2} \partial_{\mu}\bar{\tau}\partial^{\mu}\tau + \sum_{I} \frac{\partial_{\mu}\overline{\varphi}^{(I)}\partial^{\mu}\varphi^{(I)}}{\langle -i\tau + i\bar{\tau}\rangle^{k_{I}}}$$

Some definitions

a <u>normal subgroup</u> (also known as an invariant subgroup or self-conjugate subgroup) is a *subgroup* which is invariant under conjugation by members of the group of which it is a part:

a subgroup N of the group G is normal in G if and only if $(g n g^{-1}) \in N$ for all $g \in G$ and $n \in N$

 $\Gamma(N)$, N>=2 are infinite normal subgroups of Γ , called *principal congruence subgroups*

the group $\Gamma(N)$ acts on the complex variable τ (Im $\tau > 0$)

$$y \tau = \frac{a \tau + b}{c \tau + d}$$

And it can be shown that the upper half-plane is mapped to itself under this action. The complex variable is henceforth restricted to have positive imaginary part

Some definitions

Modular Functions and Modular Forms J. S. Milne

DEFINITION 0.2. A holomorphic function f(z) on $\mathbb H$ is a modular form of level N and weight 2k if

(a)
$$f(\alpha z) = (cz + d)^{2k} \cdot f(z)$$
, all $\alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma(N)$;

(b) f(z) is "holomorphic at the cusps".

<u>Fundamental domain</u> of τ on SL(2,Z): connected open subset such that no two points of D are equivalent under SL(2,Z)

Theorem 2.12. Let $D = \{z \in \mathbb{H} \mid |z| > 1, |\Re(z)| < 1/2\}.$

- (a) D is a fundamental domain for $\Gamma(1) = \operatorname{SL}_2(\mathbb{Z})$; moreover, two elements z and z' of \bar{D} are equivalent under $\Gamma(1)$ if and only if
 - (i) $\Re(z) = \pm 1/2 \text{ and } z' = z \pm 1, \text{ (then } z' = Tz \text{ or } z = Tz'), \text{ or } z = Tz'$
 - (ii) |z| = 1 and z' = -1/z = Sz.

A case study: $\Gamma_2 \sim S_3$

Constructing the Modular Forms

Under T:
$$Y(\alpha, \beta, \gamma) \rightarrow Y(\gamma, \beta, \alpha)$$

Under **S**:
$$Y(\alpha, \beta, \gamma) \rightarrow \tau^2 Y(\gamma, \alpha, \beta)$$

representation of generators

$$\rho(S) = \frac{1}{2} \begin{pmatrix} -1 & -\sqrt{3} \\ -\sqrt{3} & 1 \end{pmatrix}, \qquad \rho(T) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$(\rho(S))^2 = \mathbb{I}, \qquad (\rho(S)\rho(T))^3 = \mathbb{I}, \qquad (\rho(T))^2 = \mathbb{I}$$

A case study: $\Gamma_2 \sim S_3$

q-expansion of the Modular Forms

$$Y_1(\tau) = \frac{1}{8} + 3q + 3q^2 + 12q^3 + 3q^4 \cdots,$$

$$Y_2(\tau) = \sqrt{3}q^{1/2}(1 + 4q + 6q^2 + 8q^3 \cdots).$$

$$Y_1(\tau) \gg Y_2(\tau) \qquad \text{for Im}(\tau) >> 1$$

Neutrino mass matrices from the Weinberg operator

	S ₃	SU(2)	k _i
$L_{e\mu}$ =(e, μ)	2	2	k _{eμ}
$L_{ au}$	1	2	k_{τ}
H _u	1	2	0

Case a)
$$(L_{eu}^2)_1 \otimes (Y^2)_1, (Y^3)_1, ..., (Y^n)_1$$

$$-2k_{e\mu}+2n=0$$
, $n=2...$

Case b)
$$(L_{e\mu}^2)_2 \otimes Y, (Y^2)_2, (Y^3)_2, ..., (Y^n)_2$$

$$-2k_{e\mu}+2n=0$$
, $n=1...$

Case c)
$$(L_{e\mu}L_{\tau})_2 \otimes Y, (Y^2)_2, (Y^3)_2, ..., (Y^n)_2$$

$$-k_{e\mu}-k_{e\tau}+2n=0, n=1...$$

Case d)
$$(L_{\tau})^2 \otimes (Y^2)_1, (Y^3)_1, ..., (Y^n)_1$$

$$-2k_{e\tau}+2n=0, n=2...$$

Neutrino mass matrices from the Weinberg operator

$$(n=1)$$

Case b)
$$(L_{e\mu}^2)_2 \otimes Y, (Y^2)_2, (Y^3)_2, ..., (Y^n)_2 \longrightarrow -2k_{e\mu} + 2n = 0, n = 1...$$

Case c)
$$(L_{e\mu}L_{\tau})_2 \otimes Y, (Y^2)_2, (Y^3)_2, ..., (Y^n)_2$$
 \longrightarrow $-k_{e\mu}-k_{e\tau}+2n=0, n=1...$

Solutions:

$$[k_{eu}=1 \quad k_{e\tau}=0] \quad [k_{eu}=0 \quad k_{e\tau}=2] \quad [k_{eu}=1 \quad k_{e\tau}=1]$$

$$m_{v} = \begin{vmatrix} bY_{2} & bY_{1} & cY_{1}/2 \\ bY_{1} & -bY_{2} & cY_{2}/2 \\ cY_{1}/2 & cY_{2}/2 & 0 \end{vmatrix}$$

Neutrino mass matrices from the Weinberg operator

$$(n=2)$$

Case a)
$$-2k_{e\mu} + 4 = 0$$

Case c)
$$-k_{e\mu} - k_{e\tau} + 4 = 0$$

Case b)
$$-2k_{eu} + 4 = 0$$

Case d)
$$-2k_{e\tau} + 4 = 0$$

$$[k_{e\mu}=2 \quad k_{e\tau}=2] \quad [k_{e\mu}=2 \quad k_{e\tau}\neq 2] \quad [k_{e\mu}\neq 2 \quad k_{e\tau}=2]$$

$$m_{v} = \begin{vmatrix} (a+b)y_{1}^{2} + (a-b)y_{2}^{2} & 2by_{1}y_{2} & cy_{1}y_{2} \\ * & (a-b)y_{1}^{2} + (a+b)y_{2}^{2} & 1/2c(y_{1}^{2} - y_{2}^{2}) \\ * & * & d(y_{1}^{2} + y_{2}^{2}) \end{vmatrix}$$

A case study: $\Gamma_2 \sim S_3$

Dedekind eta functions

$$\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1 - q^n)$$
 $q \equiv e^{i2\pi}$

Under T:
$$\begin{cases} \eta(2\tau) \rightarrow e^{i\pi/6} \eta(2\tau) \\ \eta(\tau/2) \rightarrow \eta((\tau+1)/2) \\ \eta((\tau+1)/2) \rightarrow e^{i\pi/12} \eta(\tau/2) \end{cases}$$

Mod

$$Id[a_, b_] := \{\{Mod[a, b], 0\}, \{0, Mod[a, b]\}\}$$

$$[d[-1, 2] \qquad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Id[-1, 3]
$$\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$